To solve this problem it is necessary to apply the definition given in Faraday's law in a solenoid for which it is noted that


Where,
N = Number of loops
A = Cross sectional Area
B = Magnetic Field



Therefore the correct answer is A.
Answer: The bottom of the ladder is moving at 3.464ft/sec
Explanation:
The question defines a right angle triangle. Therefore using pythagorean
h^2 + l^2 = 10^2 = 100 ...eq1
dh/dt = -2ft/sec
dl/ dt = ?
Taking derivatives of time in eq 1 on both sides
2hdh/dt + 2ldl/dt = 0 ....eq2
Putting l = 5ft in eq2
h^ + 5^2 = 100
h^2 = 25 = 100
h Sqrt(75)
h = 8.66 ft
Put h = 8.66ft in eq2
2 × 8.66 × (-2) + 2 ×5 dl/dt
dl/dt = 17.32 / 5
dl/dt = 3.464ft/sec
Answer:
Explanation:
Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .
velocity of approach = 1.5 - 0 = 1.5
velocity of separation = v₁ + v₂
coefficient of restitution = velocity of separation / velocity of approach
.8 = v₁ + v₂ / 1.5
v₁ + v₂ = 1.2
applying law of conservation of momentum
m x 1.5 + 0 = mv₂ - mv₁
1.5 = v₂ - v₁
adding two equation
2 v ₂= 2.7
v₂ = 1.35 m /s
v₁ = - .15 m / s
During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.
For second collision ,
coefficient of restitution = velocity of separation / velocity of approach
.5 = v₃ + v₄ / 1.35
v₃ + v₄ = .675
applying law of conservation of momentum
m x 1.35 + 0 = mv₄ - mv₃
1.35 = v₄ - v₃
adding two equation
2 v ₄= 2.025
v₄ = 1.0125 m /s
v₃ = - 0 .3375 m / s
<h2>
Answer: 13.61 N/m</h2>
Hooke's law establishes that the elongation of a spring is directly proportional to the modulus of the force
applied to it, <u>as long as the spring is not permanently deformed</u>:
(1)
Where:
is the elastic constant of the spring. The higher its value, the more work it will cost to stretch the spring.
is the length of the spring without applying force.
is the length of the spring with the force applied.
According to this, we have a spring where only the force due gravity is applied.
In other words, the force applied is the weigth
of the block:
(2)
Where
is the mass of the block and
is the gravity acceleration.
(3)
(4)
Knowing the force applied
and
and
, we can substitute the values in equation (1) and find
:
(5)
(6)
<u>Finally:</u>
Coulomb's Law: Force = k x q1x q2 divided distance square
where k=9x10^9 , q1 and q2 are the charge
So if you distance is halved, your force is stronger by 4 times
and if you distance is doubled, your force is 1/4
Ask me again if you aren't clear :)