Answer:
However, the disadvantages are:
1. Many atimes for some motion prolems, free-body diagrams has to be drawn many times so to have enough equations to solve for the unknowns. This is not the same with energy conservation principles.
2. In situations where we need to find the internal forces acting on an object, we can't truly solve such problems using free-body diagram as it captures external forces. This is not the same with energy conservation principles.
Explanation:
Often times the ideal method to use in solving motion problem related questions are mostly debated.
Energy conservation principles applies to isolated systems are useful when object changes their positions in moving upward or downward converts its potential energy due to gravity for kinetic energy, or the other way round. When energy in a system or motion remains constant that is energy is neither created nor destroyed, it can therefore be easier to calculate other unknown paramters like in the motion problem velocity, distance bearing it in mind that energy can only change from one type to another.
On the other hand, free body diagram which is a visual representation of all the forces acting on an object including their directions has so many advantages in solving motion related problems which include finding relationship between force and motion in identifying the force acting on a body.
The Celsius degree is the same size as the Kelvin.
The correct choice is 'C'.
Answer:
Range of wavelength will be
to 
Explanation:
We have given range of frequency is 400-560 Hz
Speed of the light 
We have to find the range of the wavelength of signal transmitted
Ween know that velocity is given by
, here
is wavelength and f is frequency
So for 400 Hz frequency wavelength will be 
And wavelength for frequency 560 Hz 
So range of wavelength will be
to 
2000÷330=6.06 repatant so the answer would be about 6.06 seconds