Water and wind cause mechanical weathering and produce angular rocks, sheer canyon walls, and pebble-covered surfaces.
<span>The answer is -0.8 m/s. We know acceleration is the average of final minus initial velocity over time (a = (vf-v0)/t). We also know that Force is equal to Mass times Acceleration (F = ma). Using our force equation, we know that the acceleration we get is negative 8.8 (-8.8). The force is acting in the opposite direction of the rugby player, hence the negative sign. From there, plug in that number for a in the velocity equation, and solve for vf, as v0 and t are known. We get 0.8 m/s in the opposite direction that the player was running.</span>
Answer:

Explanation:
Given that
Length = L
At initial over hanging length = Xo
Lets take the length =X after time t
The velocity of length will become V
Now by energy conservation

So

We know that



At t= 0 ,X=Xo
So we can say that

So the length of cable after time t
