Answer:
w₂ = 22.6 rad/s
Explanation:
This exercise the system is formed by platform, man and bricks; For this system, when the bricks are released, the forces are internal, so the kinetic moment is conserved.
Let's write the moment two moments
initial instant. Before releasing bricks
L₀ = I₁ w₁
final moment. After releasing the bricks
= I₂W₂
L₀ = L_{f}
I₁ w₁ = I₂ w₂
w₂ = I₁ / I₂ w₁
let's reduce the data to the SI system
w₁ = 1.2 rev / s (2π rad / 1rev) = 7.54 rad / s
let's calculate
w₂ = 6.0/2.0 7.54
w₂ = 22.6 rad/s
That's a not-bad description of a capacitor.
The acceleration of the crate after it begins to move is 0.5 m/s²
We'll begin by calculating the the frictional force
Mass (m) = 50 Kg
Coefficient of kinetic friction (μ) = 0.15
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (N) = mg = 50 × 10 = 500 N
<h3>Frictional force (Fբ) =?</h3>
Fբ = μN
Fբ = 0.15 × 500
<h3>Fբ = 75 N</h3>
- Next, we shall determine the net force acting on the crate
Frictional force (Fբ) = 75 N
Force (F) = 100 N
<h3>Net force (Fₙ) =?</h3>
Fₙ = F – Fբ
Fₙ = 100 – 75
<h3>Fₙ = 25 N</h3>
- Finally, we shall determine the acceleration of the crate
Mass (m) = 50 Kg
Net force (Fₙ) = 25 N
<h3>Acceleration (a) =?</h3>
a = Fₙ / m
a = 25 / 50
<h3>a = 0.5 m/s²</h3>
Therefore, the acceleration of the crate is 0.5 m/s²
Learn more on friction: brainly.com/question/364384