Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m
Answer:
From the second law of motion:
F = ma
we are given that the force applied on the block is 20N and the block accelerates at an acceleration of 4 m/s/s
So, F= 20N and a = 4 m/s/s
Replacing the variables in the equation:
20 = 4* m
m = 20 / 4
m = 5 kg
Answer:
a
Explanation:
b, c, and d are all opinion based, a is the only one that you need factual evidence and observations.
Answer:

Explanation:
First, we are going to calculate the electrical potential in the point middle between the two charges
Remember that the electrical potential can be calculated as:

Where 
and it is satisfy the superposition principle, thus


The electrical potential at 10 cm from charge 1 is:


Since the work - energy theorem, we have:

where q is the electron's charge and m is the electron's mass
Therefore:

