1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
poizon [28]
2 years ago
7

Please help im stuck and can't find the answer sheet ANYWHERE :(​ PLEASEEEEEEEEEEE

Physics
1 answer:
Vladimir [108]2 years ago
6 0

Answer:

All steps are 20 * 100  (break the rest into appropriate pieces)

You can multiply as follows

(2000) * ((3 * 60) + (2 * 60) + 60)

V = 2000 * 6 * 60) = 720,000 cm^3 = .72 m^3

.72 m^3 * 2400 kg / m^3 = 1728 kg

You might be interested in
Suppose students experiment with the tube and a variety of darts. Some darts have higher masses than others but are the same aer
san4es73 [151]

Answer:

The dart with the small mass will travel the farthest distance.

Explanation:

Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.

5 0
3 years ago
A crate is pushed up each of the two ramps shown in the diagram below. Based on the concept that simple machines make work easie
Naddik [55]

Answer:

ramp b requires less force than ramp a

Explanation:

7 0
3 years ago
Two postal delivery workers have different routes. They both travel from the post office, to neighborhoods to deliver mail, and
SOVA2 [1]

they travel the same distance

7 0
3 years ago
f your risk-aversion coefficient is A = 4 and you believe that the entire 1926–2015 period is representative of future expected
siniylev [52]

Answer:

The portfolio should invest 48.94% in equity while 51.05% in the T-bills.

Explanation:

As the complete question is not given here ,the table of data is missing which is as attached herewith.

From the maximized equation of the utility function it is evident that

Weight=\frac{E_M-r_f}{A\sigma_M^2}

For the equity, here as

  • Weight is percentage of the equity which is to be calculated
  • {E_M-r_f} is the Risk premium whose value as seen from the attached data for the period 1926-2015 is 8.30%
  • A is the risk aversion factor which is given as 4.
  • \sigma_M is the standard deviation of the portfolio which from the data for the period 1926-2015 is 20.59

By substituting values.

Weight=\frac{E_M-r_f}{A\sigma_M^2}\\Weight=\frac{8.30\%}{4(20.59\%)^2}\\Weight=0.4894 =48.94\%

So the weight of equity is 48.94%.

Now the weight of T bills is given as

Weight_{T-Bills}=1-Weight_{equity}\\Weight_{T-Bills}=1-0.4894\\Weight_{T-Bills}=0.5105=51.05\%\\

So  the weight of T-bills is 51.05%.

The portfolio should invest 48.94% in equity while 51.05% in the T-bills.

7 0
3 years ago
Consider a container of oxygen gas at a temperature of 23°C that is 1.00 m tall. Compare the gravitational potential energy of a
Sergio039 [100]

Answer:

Yes, it is reasonable to neglect it.

Explanation:

Hello,

In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

m=1molec*\frac{1mol}{6.022x10^{23}molec} *\frac{32g}{1mol}*\frac{1kg}{1000g}=5.31x10^{-26}kg

After that, we compute the potential energy 1.00 m above the reference point:

U=mhg=5.31x10^{-26}kg*1.00m*9.8\frac{m}{s^2}=5.2x10^{-25}J

Then, we compute the average kinetic energy at the specified temperature:

K=\frac{3}{2}\frac{R}{Na}T

Whereas N_A stands for the Avogadro's number for which we have:

K=\frac{3}{2} \frac{8.314\frac{J}{mol*K}}{6.022x10^{23}/mol}*(23+273)K\\ \\K=6.13x10^{-21}J

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.

Regards.

8 0
3 years ago
Other questions:
  • Please help .. there could be more than one answer to this question.
    13·1 answer
  • The Moon takes about 27 days to orbit the Earth. Assuming a circular orbit, how fast is it orbiting? Express your answer in km/h
    11·1 answer
  • Which statements about Earth’s atmosphere are correct? Check all that apply. helpppp
    14·2 answers
  • A 62-kg person jumps from a window to a fire net 20.0 m directly below, which stretches the net 1.4 m. Assume that the net behav
    15·1 answer
  • At what frequency would the wavelength of sound in air be equal to the mean free path of oxygen molecules at 1.5 atm pressure an
    14·1 answer
  • In order for a satellite to move in a stable circular orbit of radius 6588km at a constant speed, its centripetal acceleration m
    14·1 answer
  • In one hour, coal supplies 500 000 J of energy. The energy amounts to 380 000 J. How much useful energy is produced in one hour?
    12·1 answer
  • Date
    7·1 answer
  • 10) For a horizontally launched projectile, decreasing the velocity of the
    5·1 answer
  • What does red shift tell about the movement of a galaxy?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!