Answer:
A) 854.46 kPa
Explanation:
P₁ = initial pressure of the gas = 400 kPa
P₂ = final pressure of the gas = ?
T₁ = initial temperature of the gas = 110 K
T₂ = final temperature of the gas = 235 K
Using the equation

Inserting the values

P₂ = 854.46 kPa
Option D would be the correct one!
Lower mass: 1.20 kg, upper mass: 1.28 kg
Explanation:
In order to solve the problem, we consider the forces acting on the upper mass only first.
The upper mass is acted upon three forces:
- The applied force
, upward - The weight of the mass itself,
, where
is the upper mass and
is the acceleration of gravity, downward - The tension in the string,
, downward
Therefore, the equation of the forces for the upper mass is:

where
is the acceleration (upward)
Solving for
,

Now we can find the lower mass by considering the forces acting on it:
- The tension in the string, T = 16 N, upward
- The weight of the mass itself,
, where
is the lower mass, downward
So the equation of the forces is

And solving for the mass,

Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
The correct answer is D. 2200 Hz
Explanation:
The frequency of a wave is measured in hertz (Hz) and refers to how often a wave passes through a point during a specific time. This factor can be calculated if you divide the velocity of the wave by the wavelength (distance between crests) this means f (frequency) = v (velocity) / λ (wavelength).
f (frequency) = 242 m/s (velocity) / 0.11 (wavelegth)
f = 2200 Hz
According to this, the frequency of the wave, in this case, is 2200 Hz