Answer : The correct option is, (c) use of a mobile and a stationary phase.
Explanation :
Chromatography : It is a separation process or technique of a mixture in which a mixture is distributed between the two phases at different rates, one of which is stationary phase and another is mobile phase.
Mobile phase : The mixture is dissolved in a solution is known as mobile phase.
Stationary phase : It is an adsorbent medium and It is a solid, liquid or gel that remains immovable when a liquid or a gas moves over the surface of adsorbent. It remains stationary.
Hence, a characteristic feature of any form of chromatography is the use of a mobile and a stationary phase.
Answer:
When salt is dissolved in water, the particles of salt get into the spaces between particles of water and starts dissolving and disappear.
Explanation:
Answer:
Explanation:
Similarities.
Both Ionic and covalents bond produce exothermic reactions.
They are both neutral.in Ionic bonds, the two opposite charge will terminate each other and in covalent, the neutral molecules tend to share electrons.
Difference
Ionic bonds have high polarity while covalent have low.
Ionic bonds have no definite shape, covalent have.
Ionic have high melting points, covalent have low.
Io ic have high boiling point, covalents have low.
Answer:
The balanced equation is:
2 HNO3 + Mg ---> Mg(NO3)2 + H2
From the equation, we can see that we need twice the moles of HNO3 than the moles of Mg
Moles of Mg:
Molar mass of Mg = 24 g/mol
Moles = Given mass / Molar Mass
Moles of Mg = 4.47 / 24 = 0.18 moles (approx)
Hence, 2(moles of Mg) = 0.36 moles of HNO3 will be consumed
Number of moles of HNO3 after the reaction is finished is the number of unreacted moles of HNO3
Unreacted moles of HNO3 = Total Moles - Moles consumed
Unreacted moles of HNO3 = 0.64 moles (approx)
Since we approximated the value of moles of Mg, the value of remaining moles of HNO3 will also be approximate
From the given options, we can see that 0.632 moles is the closest value to our answer
Therefore, 0.632 moles will remain after the reaction
Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A