1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
3 years ago
13

a current of 250 amps is flowing through a copper wire with resistance of 2.09 x 10^4 ohms. what is the voltage

Physics
1 answer:
Dima020 [189]3 years ago
7 0

V = I · R

Voltage = (current) · (Resistance)

Voltage = (250 A) · (2.09 x 10⁴)

Voltage = 5,225,000 volts .

I may be out of line here, but I'm pretty sure
that the resistance is 2.09 x 10⁻⁴ .
Then

Voltage = 0.05225 volt (not 5 million and something)
You might be interested in
A coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged con
Tcecarenko [31]

Complete question:

A 50 m length of coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged conductor (with charge −8.5 µC and radius 9.249 mm).

Required:

What is the magnitude of the electric field halfway between the two cylindrical conductors? The Coulomb constant is 8.98755 × 10^9 N.m^2 . Assume the region between the conductors is air, and neglect end effects. Answer in units of V/m.

Answer:

The magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

Explanation:

Given;

charge of the coaxial capable, Q = 8.5 µC = 8.5  x 10⁻⁶ C

length of the conductor, L = 50 m

inner radius, r₁ = 1.304 mm

outer radius, r₂ = 9.249 mm

The magnitude of the electric field halfway between the two cylindrical conductors is given by;

E = \frac{\lambda}{2\pi \epsilon_o r} = \frac{Q}{2\pi \epsilon_o r L}

Where;

λ is linear charge density or charge per unit length

r is the distance halfway between the two cylindrical conductors

r = r_1 + \frac{1}{2}(r_2-r_1) \\\\r = 1.304 \ mm \ + \  \frac{1}{2}(9.249 \ mm-1.304 \ mm)\\\\r = 1.304 \ mm \ + \ 3.9725 \ mm\\\\r = 5.2765 \ mm

The magnitude of the electric field is now given as;

E = \frac{8.5*10^{-6}}{2\pi(8.85*10^{-12})(5.2765*10^{-3})(50)} \\\\E = 5.793*10^5 \ V/m

Therefore, the magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

5 0
3 years ago
Which equation can be used to calculate the normal force on an object if you know the speed of the object, the coefficient of ki
tino4ka555 [31]

Answer:

D

Explanation:

The friction force is the weight force times the coefficient of friction. So diving by the coefficient gives you the weight force which is equivalent to the normal force.

3 0
2 years ago
You stand on a merry-go-round which is spinning at f = 0:25 revolutions per second. You are R = 200 cm from the center. (a) Find
ivanzaharov [21]

Answer:

(a) ω = 1.57 rad/s

(b) ac = 4.92 m/s²

(c) μs = 0.5

Explanation:

(a)

The angular speed of the merry go-round can be found as follows:

ω = 2πf

where,

ω = angular speed = ?

f = frequency = 0.25 rev/s

Therefore,

ω = (2π)(0.25 rev/s)

<u>ω = 1.57 rad/s </u>

(b)

The centripetal acceleration can be found as:

ac = v²/R

but,

v = Rω

Therefore,

ac = (Rω)²/R

ac = Rω²

therefore,

ac = (2 m)(1.57 rad/s)²

<u>ac = 4.92 m/s² </u>

(c)

In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:

Centripetal Force = Frictional Force

m*ac = μs*R = μs*W

m*ac = μs*mg

ac = μs*g

μs = ac/g

μs = (4.92 m/s²)/(9.8 m/s²)

<u>μs = 0.5</u>

7 0
3 years ago
Calculate the energy, wavelength, and frequency of the emitted photon when an electron moves from an energy level of -3.40 eV to
jasenka [17]

Answer:

(a) The energy of the photon is 1.632 x 10^{-8} J.

(b) The wavelength of the photon is 1.2 x 10^{-17} m.

(c) The frequency of the photon is 2.47 x 10^{25} Hz.

Explanation:

Let;

E_{1} = -13.60 ev

E_{2} = -3.40 ev

(a) Energy of the emitted photon can be determined as;

E_{2} - E_{1} = -3.40 - (-13.60)

           = -3.40 + 13.60

           = 10.20 eV

           = 10.20(1.6 x 10^{-9})

E_{2} - E_{1} = 1.632 x 10^{-8} Joules

The energy of the emitted photon is 10.20 eV (or 1.632 x 10^{-8} Joules).

(b) The wavelength, λ, can be determined as;

E = (hc)/ λ

where: E is the energy of the photon, h is the Planck's constant (6.6 x 10^{-34} Js), c is the speed of light (3 x 10^{8} m/s) and λ is the wavelength.

10.20(1.6 x 10^{-9}) = (6.6 x 10^{-34} * 3 x 10^{8})/ λ

λ = \frac{1.98*10^{-25} }{1.632*10^{-8} }

  = 1.213 x 10^{-17}

Wavelength of the photon is 1.2 x 10^{-17} m.

(c) The frequency can be determined by;

E = hf

where f is the frequency of the photon.

1.632 x 10^{-8}  = 6.6 x 10^{-34} x f

f = \frac{1.632*10^{-8} }{6.6*10^{-34} }

 = 2.47 x 10^{25} Hz

Frequency of the emitted photon is 2.47 x 10^{25} Hz.

6 0
3 years ago
Select all that apply
borishaifa [10]
a,b,c  is your answer light and sound are not considered matter and heat is energy created from matter and electricity is particles moving basically therefore electricity is matter hope this helps
5 0
3 years ago
Other questions:
  • In winter why do water tanks start freezing from surface and not from bottom
    10·1 answer
  • 8. What is the kinetic energy of a car that has a mass of 1000 kg and is moving at a speed of 30 m/s?
    7·1 answer
  • Physics help! I really need this homework done:
    8·1 answer
  • The period of a wave is 10 seconds and it’s wavelength is 2 meters. What is the wave’s speed?
    8·1 answer
  • Which special effects technique is being used in television weather reports in which meteorologists stand in front of moving map
    6·2 answers
  • Sierra did 500 J of work to move her couch. If she exerts 250 N of force on the couch, how far did she move it?
    9·1 answer
  • When rockets split do they come back to earth?
    15·1 answer
  • Can someone help me ASAP on this science question
    7·1 answer
  • What is the resistance of a light bulb if a potential difference of 120 V will produce a current of 0. 5 A in the bulb? 0. 0042
    8·1 answer
  • A uniform bar has a mass of 2.2 kg and the angle shown is 30 degrees. Calculate the net torque about the point P for the bar. Do
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!