Answer:
533.33 nm
Explanation:
Since dsinθ = mλ for each slit, where m = order of slit and λ = wavelength of light. Let m' = 10 th order fringe of the first slit of wavelength of light, λ = 640 nm and m"= 12 th order fringe of the second slight of wavelength of light, λ'.
Since the fringes coincide,
m'λ = m"λ'
λ' = m'λ/m"
= 10 × 640 nm/12
= 6400 nm/12
= 533.33 nm
If you are asking for the weight then the formula is F=mg where f is weight m is mass and g is acceleration due to gravity.m=52kg and g=9.8m/s2(the gravity of earth)
F=52*9.8=509.6
therefore the weight of the object is 509.6N
There are two particular cases, the first is when Object A is attracted to the neutral wall. This would indicate that the object is not neutral, as there is an attraction.
At the same time we know that Object A is attracted to an object B. And therefore, the load of A must be opposite to that of B. Remember that opposite charges attract each other. If the charge of object B is positive, then the charge of object A will be negative.
Option B is correct: It has a negative charge.
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
<span>This spectrometer reading shows some red, blue, and purple. Our atom is most likely Hydrogen source.
This spectrometer reading shows some reds, orange, and yellow. Our atom is most likely Neon source.
This spectrometer reading shows some red, yellow, and blue. Our atom is most likely Helium source.
This spectrometer reading shows some yellow, blue, and purple. Our atom is most likely Mercury source</span>