The resistance of a conductor is given by

where L is the length of the wire,

the resistivity of the material and A the cross-sectional area.
We can see that if all the other quantities do not change, if the new length of the conductor is 4 times the original length:

, then the new resistance is also 4 times the original value:
Answer:
Motion with constant velocity of magnitude 1 m/s (uniform motion) for 4 seconds in a positive direction and then for 2 seconds uniform motion with constant velocity of magnitude 3 m/s in reverse direction .
Explanation:
The graph shows a constant velocity of 1 m/s for 4 seconds in the positive direction. After that, between 4 seconds and 6 seconds, the object reverses its motion with constant velocity of magnitude 3m/s.
Answer:
The wavelength is about 733 meters.
Explanation:
Use the wavelength-frequency relationship:

The wavelength is about 733 meters.
Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m