Answer:
Though no question is specified here but let analyzed experiences of each
Explanation:
1. Required a force to stop it (Law of inertial). Constant acceleration
2. will have reduced acceleration (deceleration)
3. Uniform acceleration may set in. it accelerate
4. maximized it speed since no friction affect it motion
5. accelerating. Vo=0 and V gradually increased
6. less or no friction opposes the motion
7. It experience reduce motion based on air friction
8. constant acceleration due to gravity
9. g can be a bit affected but still about equal
Answer;
-A wave with the longest wavelength.
Explanation;
-Diffraction is the apparent of wave through,around small obstacles and the spreading out of wave past small openings. When thinking of diffraction of a wave think of shining a flashlight around a corner. The light bends around the corner but there is a place where it is dark and the light does not hit. Diffraction of a wave is basically the wave bending around an object then dispersing out.
-The amount of diffraction (the sharpness of the bending) increases with increasing wavelength and decreases with decreasing wavelength. When the wavelength of the waves is smaller than the obstacle, no noticeable diffraction occurs.
Answer:
(a) 2.34 s
(b) 6.71 m
(c) 38.35 m
(d) 20 m/s
Explanation:
u = 20 m/s, theta = 35 degree
(a) The formula for the time of flight is given by


T = 2.34 second
(b) The formula for the maximum height is given by


H = 6.71 m
(c) The formula for the range is given by


R = 38.35 m
(d) It hits with the same speed at the initial speed.
Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Answer:
<h3>n(F) = 4</h3>
Explanation:
Cardinality of a set is the number of elements in that set. Given the set.
F= {mango, apple, banana, orange), we are to determine the cardinality of the set i.e the amount of fruit present in the set. Cardinality of the set F is represented as n(F).
Since there are 4 different fruit in the given set F, hence the cardinality of the set F is n(F) = 4