Answer:

Explanation:
Molarity is a measure of concentration in moles per liter.

The solution has a molarity of 1.2 M or 1.2 moles per liter. There are 4.0 moles of NaCl, the solute. We don't know the liters of solution, so we can use x.
- molarity= 1.2 mol/L
- moles of solute= 4.0 mol
- liters of solution =x
Substitute the values into the formula.

Since we are solving for x, we must isolate the variable. Begin by cross multiply (multiply the 1st numerator and 2nd denominator, then the 1st denominator and 2nd numerator.



x is being multiplied by 1.2 moles per liter. The inverse of multiplication is division, so divide both sides by 1.2 mol/L


The units of moles (mol) will cancel.


The original measurements both have 2 significant figures, so our answer must have the same. For the number we found, this is the tenths place.
The 3 in the hundredth place tells us to leave the 3 in the tenths place.

Approximately <u>3.3 liters of solution</u> are needed to make a 1.2 M solution with 4.0 moles of sodium chloride.
I think it’s the third option
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:

Answer:

Explanation:
The I₂ is the common substance in the two equations.
(1) IO₃⁻ + 5I⁻ + 6H⁺ ⟶ 3I₂ + 3H₂O
{2) I₂ + 2S₂O₃²⁻ ⟶ 2I⁻ + S₄O₆²⁻
From Equation (1), the molar ratio of iodate to iodine is

From Equation (2), the molar ratio of iodine to thiosulfate is

Combining the two ratios, we get

Answer:
Lonic.an electron will be transferred from potassium to the chlorine atom