Sodium bicarbonate and acetic acid are not good substitute for sodium azide in airbags since the require more mass and produce less gas.
<h3>Which is the better chemical for an airbag?</h3>
The chemical equation for the production of nitrogen gas from sodium azide is given below:
1 mole or 66 go of sodium azide produces 3 moles or 67.2 L of nitrogen gas.
The equation for the production of carbon dioxide from sodium bicarbonate and acetic acid is given below:
- Na₂CO₃ + CH₃COOH → CH₃COONa + CO₂ + H₂O
1 mole, 106 g of Na₂CO₃ and 1 mole, 82 g of CH₃COOH are required to produce 1 mole or 22.4 L of CO₂.
The mass of sodium azide required is less than that of sodium bicarbonate and acetic acid required. Also, sodium azide produces a greater volume of gas. Therefore, sodium bicarbonate and acetic acid are not good substitute for sodium azide in airbags.
In conclusion, sodium azide is a better choice in airbags.
Learn more about airbags at: brainly.com/question/14954949
#SPJ1
Ranking of the atom from highest to lowest is as follows:
Highest
Arrow = from outer edge to center
2nd Highest
Arrow = second closest ring to the outer edge to center
3rd Highest
Arrow = middle circle to center
Lowest
Arrow = outer edge to middle circle
The answer is sodium (Na)
<em>Let me know if u have anymore questions ☺</em>
The electron-group arrangement of CO₃²⁻ is trigonal planar. The molecular shape is trigonal planar, and the ideal bond angle(s) is CO₃²⁻ is 120°
<h3>What is the molecular geometry of a compound?</h3>
The position of the compound's electrons and nuclei can be seen in the molecular geometry. It demonstrates how the form of the complex is created by the interaction of electrons and nuclei.
Here, according to the VSEPR theory, the shape of the carbonate ion is trigonal planar. The carbon will be in the center.
Thus, the electron-group arrangement and the shape of the carbonate ion are trigonal planar. The bond angle will be 120°.
To learn more about molecular geometry, refer to the link:
brainly.com/question/16178099
#SPJ4
Answer is: the third reaction.
Elements in this chemical reaction do not change their oxidation number. Hydrogen has oxydation number +1, sulfur oxidation number is +6, oxygen has oxidation number -2 and barium has +2 on both sides of chemical reaction. In other reactions elements change their oxidation numbers.