Answer:
0.00915 M of
remain after 5.16 seconds.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
s⁻¹
Initial concentration
= 0.054 M
Final concentration
= ? M
Time = 5.16 s
Applying in the above equation, we get that:-
<u>0.00915 M of
remain after 5.16 seconds.</u>
The balanced equation for the above reaction is as follows;
2C₈H₁₈ + 25O₂ ---> 16CO₂ + 18H₂O
stoichiometry of octane to CO₂ is 2:16
number of C₈H₁₈ moles reacted - 191.6 g / 114 g/mol = 1.68 mol
when 2 mol of octane reacts it forms 16 mol of CO₂
therefore when 1.68 mol of octane reacts - it forms 16/2 x 1.68 = 13.45 mol of CO₂
number of CO₂ moles formed - 13.45 mol
therefore mass of CO₂ formed - 13.45 mol x 44 g/mol = 591.8 g
mass of CO₂ formed is 591.8 g
Answer: -2.13%
Explanation:
I will assume that the correct time is 94 seconds, since it is stated as a fact. The measured time of 92 seconds is -2 seonds from the actual. That gives a percent error of:
[(Measured-Actual)/Actual] or (-2/94) or -2.13%