Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.
Answer:
3400 m
Explanation:
Both lightning and thunder happen at the same time but one is faster than the other. The distance traveled by a sound can be calculated from its speed such that;
speed = distance/time, hence, distance = speed x time.
<em>For a thunder with 340 m/s speed and 10 seconds away from lightning, the distance between the thunder and the lightning can be calculated as</em>;
distance = 340 m/s x 10 s = 3400 m
Most waves approach the shore at an angle. However, they bend to be nearly parallel to the shore as they approach it because when a wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
- Most waves approach shore at an angle. As each one arrives, it pushes water along the shore, creating what is known as a longshore current within the surf zone.
- Waves approach the coast at an angle because of the direction of prevailing wind.
- The part of the wave in shallow water slows down, while the part of the wave in deeper water moves at the same speed.
- Thus when wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
To know more about waves visit:
brainly.com/question/27831266
#SPJ4