An alpha particle is a helium nucleus without the electrons - 2 neutrons and 2 protons.
So, all you would have to do is 2 x 55, which equals 110.
Answer:
Option d. 7
Explanation:
A mixture of a strong base and a strong acid produce a neutral salt and water.
This is the reaction of neutralization:
HCl + NaOH → NaCl + H₂O
NaCl → Na⁺ + Cl⁻
Sodium chloride is neutral salt which does not give H⁻ neither OH⁻ to medium, that's why pH is neutral.
Both ions are derivated from a strong acid and base so they do not make hydrolisis. They are a conjugate pair of a weak acid and base. The reactions can not occur:
Cl⁻ + H₂O ← OH⁻ + HCl
Na⁺ + H₃O⁺ ← NaOH + H₂O
<span>You need to have NAD+ as a source of oxidation for the pyruvate, as well as a supply of coenzyme A. CO2 is released by the pyruvate as a carboxyl group is removed</span>
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ
Answer:
- <u>1. Equation: 2x + 3 = 9x - 11</u>
<u></u>
- <u>2. Each row has 2 chairs</u>
Explanation:
The variable x represents the number of chairs in each row.
<u />
<u>1. She can form 2 rows of a given length with 3 chairs left over.</u>
Thus, she has:
number of rows number of chairs in chairs number of chairs
each row left over she has
2 x 3 2x + 3
<u>2. She can form 9 rows of the same length if she gets 11 more chairs.</u>
That means that she is short in 11 chairs to have 9x chairs, or that she has 11 less chairs than 9x chairs. Then she has:
<u>3. Equation:</u>
Then, number of chairs she has is 2x + 3 and, also, 9x - 11, which allows to set the equation:
<u>4. Solve the equation:</u>
Therefore, each row has 2 chairs, and she has 2x + 3 = 4 + 3 = 7 chairs.