Answer:
p-fluoronitrobenzene and sodium phenoxide is more appropriate
Explanation:
An ipso substitution is required to form p-nitrophenyl phenyl ether.
For this ipso substitution, an alkoxide anion needs to attack as a nucleophile at the carbon atom attached to fluorine atom and thereby substitute that F atom.
p-nitrophenoxide is an weak nucleophile as compared to phenoxide due to presence of electron withdrawing resonating effect of nitro group at para position.
p-fluoronitrobenzene is a good choice for nucleophilic attack by alkoxide anion as compared to fluorobenzene due to higher positive charge density at carbon atom directly attached to F atom. Higher positive charge density arises due to presence of electron withdrawing resonating effect og nitro group at para position.
So, p-fluoronitrobenzene and sodium phenoxide is more appropriate
Answer:
Option A
250 degrees Celcius
Explanation:
If 1046J of heat energy is added to water, the water will experience a rise in temperature, at a rate that is directly proportional to its specific heat capacity.
Mathematically, this can be seen as 
Where C = specific heat of water = 4.184 J/g • °C.
Q = heat energy = 1046 J

Therefore, the increase in temperature that will be experienced, is for 250 degrees Celcius
We are given that 1 teaspoon is equivalent to 5 mL,
therefore 0.75 teaspoon is:
0.75 teaspoon * (5 mL / 1 teaspoon) = 3.75 mL
So the mass is density times volume:
mass = (12.5 mg/5 ml) * 3.75 mL
<span>mass = 9.375 mg</span>