Answer:
B.) Visit a healthcare professional
Explanation:
Their judgement is much better than a friend's or your own.
Answer:
,
, 
Explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
![z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%3D%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%5Ccdot%20%5Cleft%5B%5Ccos%5Cleft%28%5Cfrac%7Bx%20%2B%202%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%20%2B%20i%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7Bx%2B2%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%5Cright%5D)
Where angles are measured in radians and k represents an integer between
and
.
The magnitude of the complex number is
and the equivalent angular value is
. The set of cubic roots are, respectively:
k = 0
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 1
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 2
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

D. lenses focus light , mirrors do not
Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Answer:
(A) Reading will be 65 N
(B) Net force on the elevator will be 49.076 N
Explanation:
We have given the balance force = 65 N
Acceleration due to gravity 
We know that W=mg
So 
m = 6.632 kg
(a) In first case as the as the speed is constant so the force on the elevator will be 65 N
(B) In second case as the elevator is decelerating at a rate of 
So net acceleration = 9.8-2.4=
So net force on elevator will be = m× net acceleration = 6.632×7.4 = 49.076 N