PH = pKa + log
![\frac{[base]}{[Acid]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Bbase%5D%7D%7B%5BAcid%5D%7D%20)
Acid is HC₂H₃O₂ and conjugate base is KC₂H₃O₂,
pKa = - log Ka = - log (1.8 x 10⁻⁵) = 4.74
so pH = 4.74 + log (0.2/0.2) = 4.74
This is called maximum buffer capacity (when acid conc. and base conc. are equal) the pH = pKa in this case
The final temperature of the water is determined as 50.55 ⁰C.
<h3>
Final temperature of the water</h3>
The final temperature of the water is determined from the following calculations;
Q = mcΔθ
Δθ = Q/mc
where;
- Q is the amount of energy = 81 kcal = 338904 J
- c is specific heat capacity of water = 4,200 J/kgC
Δθ = 338904 /(3.5 x 4200)
Δθ = 23.05 °C
Final temperature = T₁ + Δθ
Final temperature = 27.5°C + 23.05 °C = 50.55 ⁰C.
Learn more about final temperature here: brainly.com/question/16559442
#SPJ1
Answer:
well the world would be shocked
Explanation:
and suprise
Answer:
0.077M is the concentration of the hydroxyl ion
Explanation:
Dilution factor is the ratio between the aliquot that is taken of a solution and the total volume of the diluted solution.
For the problem, dilution factor is:
7.53cm³ / 147cm³ =<em> 0.05122</em>
To obtain molarity of a diluted solution you must multiply dilution factor and initial molarity of the solution, thus:
1.5 M × 0.05122 = <em>0.077M is the concentration of the hydroxyl ion</em>
Combustion will cause a chemical change in paper.
This is because the carbon compounds are being oxidized into carbon dioxide and water vapour (or h2o, same thing).