Explanation:
Composition of Stainless Steel
Steel is an alloy of iron and carbon. Stainless steels are steels containing at least 10.5% chromium, less than 1.2% carbon and other alloying elements
Answer:
Final temperature of water is 83.8°C
Explanation:
In 500.0mL of a 6.00M NaOH solution, there are:
0.5000L × (6.00mol NaOH/ L) = <em>3.00moles of NaOH</em>
As the heat involved in dissolution is 44.5 kJ/mol, when the solution is dissolved:
44.5kJ/mol × 3.00moles = 133.5kJ = 133500J
Using coffee-cup calorimeter equation:
q = m×C×ΔT
<em>Where q is heat, m is mass of water (500.0g), C is specific heat of water (4.186J/g°C) and ΔT is change in temperature</em>
<em />
133500J = 500.0g×4.186J/g°C×(X-20.0°C)
63.8 = (X-20.0°C)
83.8°C = X
<em>Final temperature of water is 83.8°C</em>
The complete equation for this reaction is,
Ba(NO3)2 + Na2PO4 = 2NaNO3 + BaPO4
Among the compounds present in the reaction, Barium Nitrate, Sodium Phosphate and Sodium Nitrate are soluble ionic compounds. Hence, they will completely ionize into ions. Only BaSO4 is insoluble which becomes the precipitate. Ionic equation is:
Ba2+ + 2NO3- + 2Na+ + PO42- = 2Na+ +NO3- + BaPO4
Cancel like ions,
Ba2+ + PO42- = BaPO4.
Thus, the stoichiometric coefficient of Barium ion is 1.
Answer:
condensing water
Explanation:
Entropy refers to the level of disorderliness in a system. The entropy of liquids is greater than that of solids. The entropy of gases is greater than that of liquids.
A process of physical change involving a change of state from solid to liquid or liquid to gas is accompanied by increase in entropy.
However, a change of state involving a change from liquid to solid or gas to liquid is accompanied by decrease in entropy.
Hence, steam condensing to water leads to decrease and not increase in entropy of the system.