Answer:
4.has gained two electrons
Explanation:
There exist electrovalent bonding the compound MgS . In electrovalent bonding, there is a transfer of electrons from the metal to non-metal.
Magnesium atom has an atomic number 12 and its electron configuration is 2,8,2
Sulfur atom , a non-metal has atomic number of 16 and its electron configuration = 2,8,6
This means that magnesium as a metal needs to loose two electrons from its valence shell to attain its stable structure.Also sulfur requires two more electron to achieve its octet structure.
Hence a transfer of electrons will take place from magnesium atom to sulfur atom, sulfur gaining two electrons.
The frequency of note C3 is 131
.
<u>Explanation:</u>
Frequency is the measure of repetition of same thing a certain number of times. So frequency is inversely proportional to the wavelength. As wavelength is distance between two successive crests or troughs in a sound wave.
And frequency is the completion of number of cycles in a given time in sound waves. The frequency and wavelength are inversely proportional to each other with velocity of sound being the proportionality constant.
Thus, here the speed of sound is given as 343 m/s, the wavelength of the note is also given as 2.62 m, then frequency will be as follows:

Thus,

So the frequency of note C3 is 131
.
Try to have a calm morning before camp. A good night’s sleep and a good breakfast. Make sure to be cautious, follow all the rules for certain areas ( some maybe restricted ). Take lots of photos doing wacky stuff! Learn but have fun learning
Answer: The force constant k is 10600 kg/s^2
Step by step:
Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.
Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.
The total energy at the point h=2m is:

The total energy at the point h=0m is:

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:
