To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.
Answer:
The order of magnitude of the distance from the sun to Earth is 10⁸ km.
Explanation:
The order of magnitude of the distance from the sun to Earth can be calculated as follows:

Where:
c: is the speed of light = 3x10⁸ m/s
t: is the time = 8 min
Hence, the distance is:

Therefore, the order of magnitude of the distance from the sun to Earth is 10⁸ km.
I hope it helps you!
Force is a vector quantity
so pulling from opposite side will be negative
so
750+(-500)= 250N
C is the right answer
becauseause the man on the right applies greater force.
Answer:
Answer: The spring constant of the spring is k = 800 N/m, and the potential energy is U = 196 J. To find the distance, rearrange the equation: The equation to find the distance the spring has been compressed is therefore: The spring has been compressed 0.70 m, which resulted in an elastic potential energy of U = 196 J being stored.
Explanation:
Do you have any answer options?
The most I can help is to tell you that a covalent bond is a type of bond that shares electrons between the bonded atoms.