The answer is 'equal'. Hydroxide ions are OH- and Hydrogen ions are H+. Have you noticed they're opposite charges? Positive + negative = neutral. That's all there is to it :)
Answer : The concentration after 17.0 minutes will be, 
Explanation :
The expression for first order reaction is:
![[C_t]=[C_o]e^{-kt}](https://tex.z-dn.net/?f=%5BC_t%5D%3D%5BC_o%5De%5E%7B-kt%7D)
where,
= concentration at time 't' (final) = ?
= concentration at time '0' (initial) = 0.100 M
k = rate constant = 
t = time = 17.0 min = 1020 s (1 min = 60 s)
Now put all the given values in the above expression, we get:
![[C_t]=(0.100)\times e^{-(5.40\times 10^{-3})\times (1020)}](https://tex.z-dn.net/?f=%5BC_t%5D%3D%280.100%29%5Ctimes%20e%5E%7B-%285.40%5Ctimes%2010%5E%7B-3%7D%29%5Ctimes%20%281020%29%7D)
![[C_t]=4.05\times 10^{-4}M](https://tex.z-dn.net/?f=%5BC_t%5D%3D4.05%5Ctimes%2010%5E%7B-4%7DM)
Thus, the concentration after 17.0 minutes will be, 
Answer:
Total 5 significant digits.
Explanation:
Significant digits are the numbers that give a meaningful contribution. For example, digit 013 has the 2 significant digits and zero is not a significant digit because digits 1 and 3 give meaningful contribution but digit zero does not value meaningful contribution. Similarly, the 89015 has a total of 5 significant digits and these digits are the 8, 9, 0, 1, and 5.
Answer:
0.534
Explanation:
Mole fraction can be calculated using the formula:
Mole fraction = number of moles of solute ÷ number of moles of solvent and solute (solution).
In this question, solute is dimethyl ether while the solvent is methanol.
Mole (n) = mass (M) ÷ molar mass (MM)
Mole of solute (dimethyl ether) = 148.5 ÷ 46.07
= 3.22moles.
Mole of solvent (methanol) = 90 ÷ 32.04
= 2.81moles.
Total moles of solute and solvent = 3.22 + 2.81 = 6.03moles.
Mole fraction of dimethyl ether = number of moles of dimethyl ether ÷ number of moles of solution (dimethyl ether + methanol)
Mole fraction = 3.22/6.03
= 0.534