Answer: B. A magnet pulls a nail towards it
Explanation: Out of the list of answers, this is the only answer where a force is acting on an object. the act of the magnet pulling on the nail is the force, and the nail is the object.
Sun is the main source of energy
The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
<h3>Answer;</h3>
<em>B.)neither longitudinal nor transverse</em>
<h3><u>Explanation;</u></h3>
- <em><u>Longitudinal waves</u></em> are waves in which the vibration of particles is parallel to the direction of the wave motion.
- <em><u>Transverse waves</u></em> on the other hand are those waves in which the vibration of particles is perpendicular to the direction of the wave motion.
- In <em><u>surface waves particles in the medium of transmission move in a circular motion.</u></em> Therefore, they are neither transverse waves nor longitudinal waves.
<span>Shading.
When light hits an opaque surface some is absorbed, the rest is reflected, The reflected light is called shading. Reflection is not simple and varies with material.
The surface’s structure defines the details of reflection. Variations produce anything from bright specular reflection</span>