The voltage across an inductor ' L ' is
V = L · dI/dt .
I(t) = I(max) sin(ωt)
dI/dt = I(max) ω cos(ωt)
V = L · ω · I(max) cos(ωt)
L = 1.34 x 10⁻² H
ω = 2π · 60 = 377 /sec
I(max) = 4.80 A
V = L · ω · I(max) cos(ωt)
V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)
<em>V = 24.25 cos(377 t)</em>
V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.
Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
Answer:
W=0.94J
Explanation:
Electrostatic potential energy is the energy that results from the position of a charge in an electric field. Therefore, the work done to move a charge from point 1 to point 2 will be the change in electrostatic potential energy between point 1 and point 2.
This energy is given by:

So, the work done to move the chargue is:

The work is positive since the potential energy in 1 is greater than 2.
<span>Generally speaking, the level of molecular motion is highest in gases, where molecules move around freely in space, bouncing off of each other, and lowest in solids, where molecules are bound together in a rigid structure. As such, the answer would be A; "the molecules in air move more than the molecules in wood".</span>
Answer:
In short, there are four types of natural silk produced around the world: Mulberry silk, Eri silk, Tasar silk and Muga silk. Mulberry silk contributes around as much as 90% of silk production, with the mulberry silkworm generally being regarded as the most important.