As thermal energy increases, there is more particle movement. As thermal energy increases, there is more particle movement. As thermal energy increases, there is less particle movement.
Sure hope this helps you
Hello,
It's D! hope I helped.
Impulse = (force) x (time)
The first impulse was (20 N) x (10 sec) = 200 meters/sec
The second one is (50 N) x (time) and we want it equal to the first one, so
(50 N) x (time) = 200 meters/sec
Divide each side by 50N : Time = 200/50 = <em>4 seconds</em>
By the way, the quantity we're playing with here is the cart's <em>momentum</em>.
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.