<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
A pure crystalline substance is a substance with an almost perfect regular and periodic pattern in a solid state. This makes this type of substance a hard one compared to an amorphous substance which is soft because of the irregular pattern within.
Climate is considered an abiotic limiting factor because it is non living . hope this helped :))
<span>
Plants and animals are multi-cellular organisms composed of eukaryotic cells, while bacteria are single-cell prokaryotic organisms. Each eukaryotic cell of a plant or animal includes a central nucleus containing DNA and membrane-bound organelles, such as endoplasmic reticulum and mitochondria. A bacterial cell has no nucleus or membrane-bound organelles.
hope it helps! :)
</span>