1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
5

Consider a system of a cliff diver and the Earth. The gravitational potential energy of the system decreases by 25,000 J as the

diver drops to the water from a height of 44.0 m. Determine her weight in newtons.
Physics
1 answer:
salantis [7]3 years ago
5 0

Answer:

568.18 N

Explanation:

From the question,

The formula for gravitational potential is given as

Ep = mgh........................ Equation 1

Where Ep = Gravitational potential, m = mass of the diver,h = Height.

But,

W = mg.................... Equation 2

Where W = weight of the diver.

Substitute equation 2 into equation 1

Ep = Wh

Make W the subject of the equation

W = Ep/h................... Equation 3

Given: Ep = 25000 J, h = 44 m

Substitute into equation 3

W = 25000/44

W = 568.18 N.

Hence the weight of the diver = 568.18 N

You might be interested in
g The electric power needs of a community are to be met by windmills with 40-m-diameter rotors. The windmills are to be located
Ksenya-84 [330]

Answer:

Explanation:

Given Data

The diameter of the wind mills is d = 40m

Velocity of the air is V = 6 m / s

Required power output is:  P ₀ = 2100 k W

Expression to calculate the exergy of the air is

E = V ² / 2

Substitute the value in above expression

E = ( 6 m / s ) ² / 2

E = 18 m ² / s ² x (1kJ/kg / 1000m²/s²)

E = 0.018 k J / k g

Expression to calculate the density of the air is

P v =m R T

m /v = P  /RT ⋯ ⋯( I )

Here  

m  is the mass of the air,  

v  is the volume of the air,  

P  is the atmospheric pressure,  

T  is the standard temperature at the atmospheric pressure and  

R  is the gas constant

As the density is

ρ = m /V

Substitute the value in expression (I)

ρ = 101  kP a /( 0.287 k J / k g ⋅ K ) ( 298 K )

ρ = 1.180 k g / m ²

Expression to calculate the mass flow rate is

m = ρ A V ⋯ ⋯ ( I I )

Here  A  is the area of the windmill

Expression to calculate the  A  is

A = π /4  d ²

Substitute the value in above expression

A = π /4 ( 40 m ²)

A = 1256.63 m ²

Substitute the value in expression (II)

m = ( 1.180 k g / m ³) ( 1256.63 m ²) ( 6 m / s )

m = 8896.94  k g / s

Expression to calculate the maximum power available to the windmill is

P w = m ( V ² /2 )

Substitute the value in above expression

P w = 8896.94  k g / s ( (6m/s)²/2 )

P w = 160144.92 W  × ( 1 W /1000 k W )

P w = 160.144 k W

Expression to calculate the number of windmills required is

n = P o /P w

Substitute the value in above expression

n=2100kw/160.144kw

n=13.11

8 0
3 years ago
A skater extends her arms, holding a 2 kg mass in each hand. She is rotating about a vertical axis at a given rate. She brings h
Usimov [2.4K]

Explanation:

It is known that relation between torque and angular acceleration is as follows.

                    \tau = I \times \alpha

and,       I = \sum mr^{2}

So,      I_{1} = 2 kg \times (1 m)^{2} + 2 kg \times (1 m)^{2}

                       = 4 kg m^{2}

      \tau_{1} = 4 kg m^{2} \times \alpha_{1}

     \tau_{2} = I_{2} \alpha_{2}

So,      I_{2} = 2 kg \times (0.5 m)^{2} + 2 kg \times (0.5 m)^{2}

                     = 1 kg m^{2}

 as \tau_{2} = I_{2} \alpha_{2}

                   = 1 kg m^{2} \times \alpha_{2}        

Hence,     \tau_{1} = \tau_{2}

                  4 \alpha_{1} = \alpha_{2}

            \alpha_{1} = \frac{1}{4} \alpha_{2}

Thus, we can conclude that the new rotation is \frac{1}{4} times that of the first rotation rate.

8 0
3 years ago
A beam of monochromatic light with a wavelength of 400 nm in air travels into water. what is the wavelength of the light in wate
slava [35]
The refractive index of water is n=1.33. This means that the speed of the light in the water is:
v= \frac{c}{n}= \frac{3 \cdot 10^8 m/s}{1.33 }=2.26 \cdot 10^8 m/s

The relationship between frequency f and wavelength \lambda of a wave is given by:
\lambda= \frac{v}{f}
where v is the speed of the wave in the medium. The frequency of the light does not change when it moves from one medium to the other one, so we can compute the ratio between the wavelength of the light in water \lambda_w to that in air \lambda as
\frac{\lambda_w}{\lambda}= \frac{ \frac{v}{f} }{ \frac{c}{f} } = \frac{v}{c}
where v is the speed of light in water and c is the speed of light in air. Re-arranging this formula and by using \lambda=400 nm, we find
\lambda_w = \lambda \frac{v}{c}=(400 nm) \frac{2.26 \cdot 10^8 m/s}{3 \cdot 10^8 m/s}=301 nm
which is the wavelength of light in water.
5 0
2 years ago
What is short circuit​
Marizza181 [45]

Answer:

A short circuit is an electrical circuit that allows

Explanation:

3 0
3 years ago
Read 2 more answers
A person rides a bike with a constant velocity of 2 m/s. If his total displacement is 10 meters, for how long was he riding?
TEA [102]

Answer:

5s

Explanation:

i just know

3 0
3 years ago
Other questions:
  • How does sound travel through a medium PLZ HURRY WILL GIVE BRAINLY
    14·2 answers
  • Do an Internet search to determine what minerals are extracted from the ground in order to manufacture the following products:
    5·1 answer
  • At t1 = 2.00 s, the acceleration of a particle in counterclockwise circular motion is 6.00 i + 4.00 j m/s2 . It moves at constan
    14·1 answer
  • What is the answer to this question
    11·1 answer
  • Which best describes the motion of air particles when a transverse wave passes through them?
    11·1 answer
  • 1-A car with momentum 19016 kg*m/s has a mass of 1300kg. What is the speed
    11·1 answer
  • Static cling makes your clothes stick together. what causes this to happen? 1. external forces to the clothes 2. forces of natur
    15·2 answers
  • ______ is the most abundant gas in Earth’s atmosphere.
    14·1 answer
  • Will anyone please help me solve this physics Problem?​
    7·1 answer
  • A 45.00 kg person in a 43.00 kg cart is coasting with a speed of 19 m/s before it goes up a hill. there is no friction, what is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!