The simplest answer would be "acceleration due to gravity."
The exact value of this acceleration changes depending on which planet your on (for example).
Answer:
A. It is always a positive force
Explanation:
Hooke's law describes the relation between an applied force and extension ability of an elastic material. The law states that provided the elastic limit, e, of a material is not exceeded, the force, F, applied is proportional to the extension, x, provided temperature is constant.
i.e F = - kx
where k is the constant of proportionality, and the minus sign implies that the force is a restoring force.
The applied force can either be compressing or stretching force.
Answer:
51.96 m/s^-1
Explanation:
a) see the attachment
b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be
v_ox=v_o*cosФ
=60*cos (30)
= 51.96 m/s^-1
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
We know that arc length (x(t)) is given with the following formula:

Where r is the radius of the barrel. We must keep in mind that as barrel rolls its radius decreases because less and less tape is left on it.
If we say that the thickness of the tape is D then with every full circle our radius shrinks by d. We can write this down mathematically:

When we plug this back into the first equation we get:

We must solve this quadratic equation.
The final solution is:

It is rather complicated solution. If we asume that the tape has no thickness we get simply: