Answer:
Speed of the alpha particle is
Explanation:
We have given charge on alpha particle 
Mass of the alpha particle 
Potential difference 
We have to find the speed of the alpha particle
From energy conservation we know that



The vessel must also have red and green side lights.
The red light is placed on the port (left) side of the boat while the green light is placed on the starboard (right) side of the vehicle. The white lights are on both the masthead (front) and stern (rear) of the boat, unless the vessel is less than 39.4 feet, in which case the front and rear white light may be combined as only one white light.
Answer:
Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a speed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.
Explanation:
i want the answer i don't know
This question deals with the volume of different shapes.
a) volume of the sphere is "33.51 m³".
b) volume of the cylinder is "25.13 m³".
a)
The volume of a sphere is given by the following formula:

<u>Volume = 33.51 m³</u>
<u />
b)
The volume of a cylinder is given by the following formula:

<u>Volume = 25.13 m³</u>
<u />
Learn more about <em>volume </em>here:
brainly.com/question/16686115?referrer=searchResults
The attached picture shows the formulae of the <em>volume</em> of different shapes.
The number of charge drifts are 3.35 X 10⁻⁷C
<u>Explanation:</u>
Given:
Potential difference, V = 3 nV = 3 X 10⁻⁹m
Length of wire, L = 2 cm = 0.02 m
Radius of the wire, r = 2 mm = 2 X 10⁻³m
Cross section, 3 ms
charge drifts, q = ?
We know,
the charge drifts through the copper wire is given by
q = iΔt
where Δt = 3 X 10⁻³s
and i = 
where R is the resistance
R = 
ρ is the resistivity of the copper wire = 1.69 X 10⁻⁸Ωm
So, i = 
q = 
Substituting the values,
q = 3.14 X (0.02)² X 3 X 10⁻⁹ X 3 X 10⁻³ / 1.69 X 10⁻⁸ X 0.02
q = 3.35 X 10⁻⁷C
Therefore, the number of charge drifts are 3.35 X 10⁻⁷C