From the equation; ΔTf = Kf × m
Where, Kf for water = 1.853 K kg/mole; m is the molarity = number of solute/amount of solvent in kg.
Glucose is the solute whose molecular mass is 180 g/mole and water is the solvent.
Moles of solute = 15.5/180 = 0.0861 moles
Amount of solvent in kg = 245/1000 = 0.245 Kg
Therefore; molarity = 0.0861/0.245 = 0.3515 moles/Kg
Therefore; ΔTf = 1.853 × 0.3515 = 0.6513 K
Hence; the depression in freezing point is 0.6513
The freezing point of solution will therefore be;
= 273 - 0.6513 = 272.3487 K
hola, esta pregunta es bastante difícil pero está bien, no lo sé, lo siento :) :)
The material which requires the most heat to raise its temperature from 10°C to 30°C is oil.
<h3>What is the formula to calculate absorbed heat?</h3>
The formula which we used to calculate the amount of involved heat in relation with specific heat is:
Q = mcΔT, where
- Q = absorbed heat
- m = mass
- c = specific heat
- ΔT = change in temperature
Among the given materials, specific heat of oil is highest than other materials so will require maximum absorbed heat.
Hence, oil requires the most heat.
To know more about specific heat, visit the below link:
brainly.com/question/6198647
#SPJ1
The sand to pass through, but not the gravel. Hope this helps!
Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L