Answer:
HF
Explanation:
Hf has hydrogen bonding which is the strongest intermolecular forces. The stronger the IM forces, the higher the boiling point.
Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Answer:
66.2 % of O
Explanation:
Our compound is the lithium nitrite.
LiNO₂
This salt is ionic and can be dissociated: LiNO₂ → Li⁺ + NO₂⁻
We determine the molar mass:
molar mass of Li + 3 . molar mass of N + 6 . molar mass of O
6.94 g/mol + 3. 14 g/mol + 6 . 16 g/mol = 144.94 g/mol
The mass of oxygen contained in 1 mol of lithium nitrite is:
6 . 16 g/mol = 96 g
So the percentage of oxygen present is:
(96 g / 144.94 g) . 100 = 66.2 %
We can use the formula P=IV to calculate the current, where “P” is power (measured in watts), “I” is current (measured in Amps), and “V” is voltage. Simply plug and solve:
P = IV
(3.5 Watts) = I(120 volts)
I = 0.0292 Amps
The current flowing through the bulb is approximately 0.0292 Amps.
Hope this helps!