Answer:
The value of dissociation constant of the monoprotic acid is
.
Explanation:
The pH of the solution = 2.46
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![2.46=-\log[H^+]](https://tex.z-dn.net/?f=2.46%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.003467 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.003467%20M)

Initially
0.0144 0 0
At equilibrium
(0.0144-x) x x
The expression if an dissociation constant is given by :
![K_a=\frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)

![x=[H^+]=0.003467 M](https://tex.z-dn.net/?f=x%3D%5BH%5E%2B%5D%3D0.003467%20M)


The value of dissociation constant of the monoprotic acid is
.
C. A nearly identical image.
Answer:
option D is correct
D. This solution is a good buffer.
Explanation:
TRIS (HOCH
)
CNH
if TRIS is react with HCL it will form salt
(HOCH
)
CNH
+ HCL ⇆ (HOCH
)
NH
CL
Let the reference volume is 100
Mole of TRIS is = 100 × 0.2 = 20
Mole of HCL is = 100 × 0.1 = 10
In the reaction all of the HCL will Consumed,10 moles of the salt will form
and 10 mole of TRIS will left
hence , Final product will be salt +TRIS(9 base)
H = Pk
+ log (base/ acid)
8.3 + log(10/10)
8.3