Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
I believe the answer is compound B may have a lower molecular weight compared to compound A.
At the same temperature, lighter particles of a compound have a higher average speeds than do heavier particles of another compound. Thus, particles of compound B are lighter than those of compound A and thus they have a higher average speed, hence evaporating faster compared to compound A.
Answer:
Infrared thermography
Explanation:
Infrared thermography is equipment or method, which detects infrared energy emitted from object, converts it to temperature, and displays image of temperature distribution. ... We call our equipment as infrared thermography considering such generalization of the terminology.
<span>They want a full outer shell of electrons, so the lose, gain, or share electrons with other elements, forming compounds, until they have 8 valence electrons and become stable.
</span>