The force the escaping gas exerts of the rocket is 10.42 N.
<h3>
Force escaping gas exerts</h3>
The force the escaping gas exerts of the rocket is calculated as follows;
F = m(v - u)/t
where;
- m is mass of the rocket
- v is the final velocity of the rocket
- u is the initial velocity of the rocket
- t is time of motion
F = (0.25)(40 - 15)/0.6
F = 10.42 N
Thus, the force the escaping gas exerts of the rocket is 10.42 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1
Answer:
the ship's energy is greater than this and the crew member does not meet the requirement
Explanation:
In this exercise to calculate kinetic energy or final ship speed in the supply hangar let's use the relationship
W =∫ F dx = ΔK
Let's replace
∫ (α x³ + β) dx = ΔK
α x⁴ / 4 + β x = ΔK
Let's look for the maximum distance for which the variation of the energy percent is 10¹⁰ J
x (α x³ + β) =
- K₀
= K₀ + x (α x³ + β)
Assuming that the low limit is x = 0, measured from the cargo hangar
Let's calculate
= 2.7 10¹¹ + 7.5 10⁴ (6.1 10⁻⁹ (7.5 10⁴) 3 -4.1 10⁶)
Kf = 2.7 10¹¹ + 7.5 10⁴ (2.57 10⁶ - 4.1 10⁶)
Kf = 2.7 10¹¹ - 1.1475 10¹¹
Kf = 1.55 10¹¹ J
In the problem it indicates that the maximum energy must be 10¹⁰ J, so the ship's energy is greater than this and the crew member does not meet the requirement
We evaluate the kinetic energy if the System is well calibrated
W = x F₀ =
–K₀
= K₀ + x F₀
We calculate
= 2.7 10¹¹ -7.5 10⁴ 3.5 10⁶
= (2.7 -2.625) 10¹¹
= 7.5 10⁹ J
Answer:
models are only used by scientists
Ideally, if all the magnetic of one winding cuts the other winding, and there isn't any loss in the transformer core or the resistance of the wire, then the voltage across each winding is proportional to the number of turns in its coil.
If you apply 100 V to a winding of 50 turns, then a winding that yields 20 volts
must be wound with
(20/100) of 50 turns = 10 turns