Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0
The value of y is 50
The angle measurement of angle AOB is 100°
<h3>Circle Geometry </h3>
From the question, we are to determine the value of y and the measure of angle AOB
From one the circle theorems, we have that
Angles in the <u>same segment</u> are equal
In the given diagram, x° and y° are angles in the same segment
∴ x° = y°
From the given information,
x = 50
∴ y = 50
Hence, the value of y is 50
Also, from another circle theorem,
Angle at the <u>center</u> is twice the angle at the <u>circumference</u>
∴ ∠AOB = 2x° = 2y°
Then,
∠AOB = 2×50°
∠AOB = 100°
Hence, the angle measurement of angle AOB is 100°
Learn more on Circle Geometry here: brainly.com/question/17074363
#SPJ1
Evaluating the given sequence, it is evident that the next number is twice the number prior to it. Thus, the given is a geometric sequence with first term (a1) equal to 1 and common ratio of 2. The geometric series may be calculated by the equation,
Sn = a1 x (1 - r^n) / (1 - r)
where Sn is the sum of n terms in this case, n = 11.
Substituting the known values,
<span> Sn = 1 x (1 - 2^11) / (1 - 2) = 2047
</span>
Thus, S11 is 2047.
Answer:
yes, by SAS
Step-by-step explanation:
cause the GI and JL are congruent and the same for HG and LK