Answer:
I THINK IT'S <em>D.</em><em>.</em><em>.</em><em>.</em>
<em>HOPE </em><em>SO</em>
If you write down the formula for friction, you will get an answer.
Ff = u * N Where N is a push down force that an object experiences.
u (mu) is a constant and has no units
It may not be accelerating and still experience friction. A is not correct.
Color and Density will not affect the frictional force. B is not so.
Buoyant forces are a different thing altogether. Generally friction has nothing to do with them. C is incorrect.
The last one is your answer. Technically mg should be the answer and not mass, but the second part is correct.
Answer:
V = 576 V
Explanation:
Given:
- The area of the two plates A = 0.070 m^2
- The space between the two plates d = 6.3 mm
- Te energy density u = 0.037 J /m^3
Find:
- What must the potential difference between the plates V?
Solution:
- The energy density of the capacitor with capacitance C and potential difference V is given as:
u = 0.5*ε*E^2
- Where the Electric field strength E between capacitor plates is given by:
E = V / d
Hence,
u = 0.5*ε*(V/d)^2
Where, ε = 8.854 * 10^-12
V^2 = 2*u*d^2 / ε
V = d*sqrt ( 2*u / ε )
Plug in values:
V = 0.0063*sqrt ( 2 * 0.037 / (8.854 * 10^-12) )
V = 576 V
Answer:
According to Newton's Second Law of Motion :
Where,
F = Force Applied
m = Mass of the object
a = Acceleration
Now, we will use this law to solve this question.
Given :
Acceleration or a = 15.3 m/s²
Force = 44 N
Mass = ?
Substitute, the given values in the formula.
F = ma
⇒ m = F/a
m = 44/15.3
<u>m = 2.9 kg</u>
Let's calculate the momentum of Fiona, given by the product between its mass and its speed:

Now let's compare it with the momentum of the other animals:
a) the mass of the sea turtle is missing, so we cannot calculate its momentum.
b) the momentum of the dolphin is

c) the momentum of the horse is

d) the momentum of the lion is

And we can see that the correct answer is b), because the momentum of the dolphin is greater than the momentum of Fiona.