There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)
A truck is moving with less velocity in the direction in which the truck is moving earlier because the truck has more momentum.
<h3 /><h3>In which direction the truck moves?</h3>
A truck is moving with the velocity of 10 m/s in the same direction in which the truck is moving earlier because the truck has more mass so it has more momentum. Due to collision, the velocity of the truck is slow down but can't be stopped because of high momentum in the truck.
So we can conclude that a truck is moving with less velocity in the direction in which the truck is moving earlier because the truck has more momentum.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
This state of motionlessness occurs because all of the kinetic energy in the car is absorbed by the spring in the form of elastic potential energy. The mathematical representation is:
1/2 mv² = 1/2 kx²
25m = kx², where m is the mass of the cart, k is the spring constant and x is the spring's extension.
Answer:
Solution:
we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]
Position, velocity and acceleration are all based on the equation of motion.
The equation represents the position. The first derivative gives the velocity and the 2nd derivative gives the acceleration.
x(t)=8sint
x'(t)=8cost
x"(t)=-8sint
now at time t=2pi/3,
position, x(t)=8sin(2pi/3)=4*squart(3)cm.
velocity, x'(t)=8cos(2pi/3)==4cm/s
acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2
so at present the direction is in y-axis.
Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s