Answer:
(a) 0.17 m
(b) 5.003 m
(c) 6.38 ×
N
(d) 7.37 ×
N
Explanation:
(a) The minimum value of
will occur when q3 = 0 m or at origin and q1, q2 are at 0.17 m so the distance between q3 and q1, q2 is 0.17 m, therefore the <em>minimum value of x= 0.17 m</em>.
(b) The maximum value of x will occur when q3 = 5 m because it is said in the question that 5 is the maximum distance travelled by q3. To find the hypotenuse i.e. the distance between q3 and q1,q2, we use Pythagoras theorem.
![h^{2} = b^{2} + p^{2}](https://tex.z-dn.net/?f=h%5E%7B2%7D%20%3D%20b%5E%7B2%7D%20%2B%20p%5E%7B2%7D)
<em>Hence, the maximum distance is 5.002 m</em>
(c) For minimum magnitude we use the minimum distance calculated in (a)
Minimum Distance = 0.17 m
For electrostatic force= ![F=\frac{kq1q2}{x^{2} }](https://tex.z-dn.net/?f=F%3D%5Cfrac%7Bkq1q2%7D%7Bx%5E%7B2%7D%20%7D)
![F=\frac{9 x 10^{9} x3.2x10^{-19}x 6.4x10^{-19} }{0.17^{2} }](https://tex.z-dn.net/?f=F%3D%5Cfrac%7B9%20x%2010%5E%7B9%7D%20x3.2x10%5E%7B-19%7Dx%206.4x10%5E%7B-19%7D%20%20%7D%7B0.17%5E%7B2%7D%20%7D)
×![10^{-26} N](https://tex.z-dn.net/?f=10%5E%7B-26%7D%20N)
(d) For maximum magnitude, we use the maximum distance calculated in (b)
Maximum Distance = 5.002 m
Using the formula for electrostatic force again:
F = ![\frac{9x10^{9}x3.2x10^{-19}x6.4x10^{-19} }{5.002^{2} } }](https://tex.z-dn.net/?f=%5Cfrac%7B9x10%5E%7B9%7Dx3.2x10%5E%7B-19%7Dx6.4x10%5E%7B-19%7D%20%20%20%7D%7B5.002%5E%7B2%7D%20%7D%20%7D)
F= 7.37×
N
This is an excellent question that i do not have the answer to.
Answer:
50 meters
Explanation:
Let's start by converting to m/s. There are 3600 seconds in an hour and 1000 meters in a kilometer, meaning that 72km/h is 20m/s.
![v_f=v_o+at](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat)
Since the car starts at rest, you can write the following equation:
![20=0+a(5) \\\\a=20\div 5=4 m/s^2](https://tex.z-dn.net/?f=20%3D0%2Ba%285%29%20%5C%5C%5C%5Ca%3D20%5Cdiv%205%3D4%20m%2Fs%5E2)
Now that you have the acceleration, you can do this:
![d=v_o+\dfrac{1}{2}at^2](https://tex.z-dn.net/?f=d%3Dv_o%2B%5Cdfrac%7B1%7D%7B2%7Dat%5E2)
Once again, there is no initial velocity:
![d=\dfrac{1}{2}(4)(5)^2=2 \cdot 25=50m](https://tex.z-dn.net/?f=d%3D%5Cdfrac%7B1%7D%7B2%7D%284%29%285%29%5E2%3D2%20%5Ccdot%2025%3D50m)
Hope this helps!
Answer:
![\ d_{out} = 100 \ m.](https://tex.z-dn.net/?f=%5C%20d_%7Bout%7D%20%3D%20100%20%5C%20m.)
Explanation:
Given data:
![F_{in} = 50 \ \rm N](https://tex.z-dn.net/?f=F_%7Bin%7D%20%3D%2050%20%5C%20%5Crm%20N)
![F_{out} = 10 \ \rm N](https://tex.z-dn.net/?f=F_%7Bout%7D%20%3D%2010%20%5C%20%5Crm%20N)
![d_{in} = 20 \ m](https://tex.z-dn.net/?f=d_%7Bin%7D%20%3D%2020%20%5C%20m)
Let the distance traveled by the object in the second case be ![d_{out}.](https://tex.z-dn.net/?f=d_%7Bout%7D.)
In the given problem, work done by the forces are same in both the cases.
Thus,
![W_{in} = W_{out}](https://tex.z-dn.net/?f=W_%7Bin%7D%20%3D%20W_%7Bout%7D)
![F_{in}.d_{in} = F_{out}.d_{out}](https://tex.z-dn.net/?f=F_%7Bin%7D.d_%7Bin%7D%20%3D%20F_%7Bout%7D.d_%7Bout%7D)
![\Rightarrow \ d_{out} = \frac{F_{in}.d_{in}}{F_{out}}](https://tex.z-dn.net/?f=%5CRightarrow%20%5C%20d_%7Bout%7D%20%3D%20%5Cfrac%7BF_%7Bin%7D.d_%7Bin%7D%7D%7BF_%7Bout%7D%7D)
![\ d_{out} = \frac{50 \times 20}{10}](https://tex.z-dn.net/?f=%5C%20d_%7Bout%7D%20%3D%20%5Cfrac%7B50%20%5Ctimes%2020%7D%7B10%7D)
![\ d_{out} = 100 \ m.](https://tex.z-dn.net/?f=%5C%20d_%7Bout%7D%20%3D%20100%20%5C%20m.)
Answer:
Kinetic energy does not stay the same at all heights
Explanation:
Well as the height and wind increase so does the kinetic energy it's like when you fall as you are about to hit the floor you speed increases
HOPE THIS HELPS YA :)