Explanation:
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
The time needed for the hammer to reach the surface of the Earth is 3.54 s.
<h3>
Time of motion of the hammer</h3>
The time of motion is calculated as follows;
t = √(2h/g)
where;
- h is height of fall
- g is acceleration due to gravity
t = √(2 x 10 / 1.6)
t = 3.54 s
Thus, the time needed for the hammer to reach the surface of the Earth is 3.54 s.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
With constant angular acceleration , the disk achieves an angular velocity at time according to
and angular displacement according to
a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of
b. Under constant acceleration, the average angular velocity is equivalent to
where and are the final and initial angular velocities, respectively. Then
c. After 1.00 s, the disk has instantaneous angular velocity
d. During the next 1.00 s, the disk will start moving with the angular velocity equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle according to
which would be equal to
When 2 waves interefere (or collide with eachother), it usually affects the crest of the wave. If both waves collide with both crests, it will create an amplified crest, and the waves will pass through eachother afterwards. If a trough of a wave meets a crest, it will cause the crest to be lowered shortly before both continue on.
When a river flows into an ocean, it slows down and deposits materials in its delta