Answer:
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Explanation:
Given;
mass of the object, m = 2 kg
weigh of the object, W = 20 N
tension on the rope, T = 12 N
The acceleration of the object is calculated by applying Newton's second law of motion as follows;
T = F + W
T = ma + W
ma = T - W
(the negative sign indicates deceleration of the object)
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Answer:
The height of the image will be "1.16 mm".
Explanation:
The given values are:
Object distance, u = 25 cm
Focal distance, f = 1.8 cm
On applying the lens formula, we get
⇒ 
On putting estimate values, we get
⇒ 
⇒ 
⇒ 
As a result, the image would be established mostly on right side and would be true even though v is positive.
By magnification,
and
⇒ 
⇒ 
⇒ 
Answer:
c)At a distance greater than r
Explanation:
For a satellite in orbit around the Earth, the gravitational force provides the centripetal force that keeps the satellite in motion:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance between the satellite and the Earth's centre
v is the speed of the satellite
Re-arranging the equation, we write

so we see from the equation that when the speed is higher, the distance from the Earth's centre is smaller, and when the speed is lower, the distance from the Earth's centre is larger.
Here, the second satellite orbit the Earth at a speed less than v: this means that its orbit will have a larger radius than the first satellite, so the correct answer is
c)At a distance greater than r
The applicable relationship is N1/N2 = V1/V2, meaning the ratio of primary voltage to secondary voltage is equal to the ratio of primary turns to secondary turns.
Here N1 = 1000, V1 = 250, V2 = 400V and N2 = TBD.
Rewriting the above relationship, N2 = N1 V2/V1 = 1000 x 400/250 = 1600 turns.
Answer:
x = -1.20 m
y = -1.12 m
Explanation:
as we know that four masses and their position is given as
5.0 kg (0, 0)
2.9 kg (0, 3.2)
4 kg (2.5, 0)
8.3 kg (x, y)
As we know that the formula of center of gravity is given as




Similarly for y direction we have



