Given: Mass m = 5.00 Kg; Height h = 12 m; Time t = 15 s
Required: Power P = ?
Formula: P = Fd/t = mgh/t
P = (5.0 Kg)(9.8 m/s²)(12 m)/15 s
P = 39.2 Kg.m²/s² or
P = 39.2 J
The correct answer is C) frequency.
In fact, the frequency is the number of wave crests (or pulses) per seconds. In our problem, the machine that produces the wave pulses two times per second, so this is exactly the frequency of the compression wave.
Answer:
Explanation:
Given
Acceleration a = 1.0m/s²
Displacement S = 1.0m
Required
Time t taken by the leaf to displace
Using the equation of motion
S = ut+1/2at²
Substitute
1.0 = 0+1/2(1)t²
1 = t²/2
Cross multiply
t² = 2
t = ±√2
t = 1.41secs
It takes the leaf to 1.41s to displace by 1m upward
B: Gravity.
The force of gravity will pull the car down the hill. The weight/mass of the car also helps this.
Speed = distance / time.
Speed of him leaving the nest:
S = 100 / 20sec
5 m/s.
Catching the snake:
S2 = 50 / 5sec
10 m/s.
Average of 5& 10 = 7.5
7.5 m/s has to be the answer.