Well the object will have no Momentum since it is not moving, so a small object that is going 10 mph will have Momentum.
Answer:
<em>b. Observe the radio waves coming from all dark matter; from the strength of the radio waves from each cluster, estimate the amount of dark matter needed to produce them.</em>
<em></em>
Explanation:
The universe is thought to be made up of 85% dark matters. <em>Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect. This means that option b is wrong since radio wave is an electromagnetic wave</em>. Dark matter is a form of matter that makes up about a quarter of the total mass–energy density of the universe. Dark matter was theorized due a variety of astrophysical observations and gravitational effects that cannot be explained by accepted theories of gravity unless there were more matter in the universe than can be seen.
0.23 mm far apart are the second-order fringes for these two wavelengths on a screen 1.5 m away.
<h3>Given wavelengths 710nm and 660nm,0.65mm apart two slits, and a screen 1.5m away.</h3>
Position of n the order fringe = n λ D / d
for n = 2
position = 2 λ D / d
λ = 710 nm , D = 1.5m
d = .65 x 10⁻³
position 1 = 2 x 710 x 10⁻⁹ x 1.5 / .65 x 10⁻³
= 3276.92 x 10⁻⁶ m
= 3.276x 10⁻³ m
= 3.276mm .
For λ = 660 nm
position = 2 λ D / d
λ = 660 nm , D = 1.5 m
d = .65 x 10⁻³
position 2 = 2 x 660 x 10⁻⁹ x 1.5 / .65 x 10⁻³
= 3046.15 x 10⁻⁶ m
= 3.046 x 10⁻³ m
= 3.046 mm .
Difference between their position
= 3.276mm ₋ 3.046 mm
= 0.23 mm .
To know more about Fringes refer to: brainly.com/question/15649748
#SPJ4
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.