Answer:
v = 10 [m/s]
Explanation:
The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

where:
P = momentum [kg*m/s]
m = mass = 4 [kg]
v = velocity = 5 [m/s]
Now the momentum:
![P=4*5\\P=20[kg*m/s]](https://tex.z-dn.net/?f=P%3D4%2A5%5C%5CP%3D20%5Bkg%2Am%2Fs%5D)
This same momentum is equal for the other mass, in this way we can find the velocity.
![P=m*v\\20=2*v\\v=10[m/s]](https://tex.z-dn.net/?f=P%3Dm%2Av%5C%5C20%3D2%2Av%5C%5Cv%3D10%5Bm%2Fs%5D)
Answer: C
Explanation: Side post terminals need to be removed to inspect them for corrosion.
Over tightening the terminal bolt can damage side post terminals.
The battery terminals and cable ends can corrode especially when the battery or car is not used for a long period of time. Corrosion limits a battery's lifespan and so should be prevented. To inspect the areas where corrosion occur on a side-post battery, you need to remove the terminals.
Also, it is true that over tightening the terminal bolt can damage the side post terminals. The covering on the battery can become twisted, and make the seals on the terminals leak.
Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.

