Answer:

Explanation:
Given:
- temperature of skin,

- initial temperature of steam vapour,

- latent heat of steam,

- mass of steam,

- specific heat of water,

- final temperature,

<em>Assuming that no heat is lost in the surrounding.</em>
<u>We know:</u>

<u>Now the total heat given by the steam to form water at the given conditions:</u>
..............................(1)
where:
latent heat given out by vapour to form water of 100°C
heat given by water of 100°C to come at 34°C.
putting respective values in eq. (1)



is the heat transferred to the skin.
Answer : The specific heat capacity of the alloy 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of alloy = ?
= specific heat of water = 
= mass of alloy = 21.6 g
= mass of water = 50.0 g
= final temperature of system = 
= initial temperature of alloy = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat capacity of the alloy 
Answer:
Coefficient of static friction will be equal to 0.642
Explanation:
We have given acceleration 
Acceleration due to gravity 
We have to find the coefficient of static friction between truck and a cabinet will
We know that acceleration is equal to
, here
is coefficient of static friction and g is acceleration due to gravity
So 
So coefficient of static friction will be equal to 0.642
For every actions, there is an opposite reaction.
27.5 because of you divide the 55miles with the time you get your velocity which is the speed.