<h2><u>
Answer with explanation:</u></h2>
The confidence interval for population mean (when population standard deviation is unknown) is given by :-
![\overline{x}-t^*\dfrac{s}{\sqrt{n}}< \mu](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D-t%5E%2A%5Cdfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D%3C%20%5Cmu%3C%5Coverline%7Bx%7D%2Bz%5E%2A%5Cdfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
, where n= sample size
= Sample mean
s= sample size
t* = Critical value.
Given : n= 25
Degree of freedom : ![df=n-1=24](https://tex.z-dn.net/?f=df%3Dn-1%3D24)
![s=\ $19.95](https://tex.z-dn.net/?f=s%3D%5C%20%2419.95)
Significance level for 98% confidence interval : ![\alpha=1-0.98=0.02](https://tex.z-dn.net/?f=%5Calpha%3D1-0.98%3D0.02)
Using t-distribution table ,
Two-tailed critical value for 98% confidence interval :
![t^*=t_{\alpha/2,\ df}=t_{0.01,\ 24}=2.4922](https://tex.z-dn.net/?f=t%5E%2A%3Dt_%7B%5Calpha%2F2%2C%5C%20df%7D%3Dt_%7B0.01%2C%5C%2024%7D%3D2.4922)
⇒ The critical value that should be used in constructing the confidence interval = 2.4922
Then, the 95% confidence interval would be :-
![93.36-(2.4922)\dfrac{19.95}{\sqrt{25}}< \mu](https://tex.z-dn.net/?f=93.36-%282.4922%29%5Cdfrac%7B19.95%7D%7B%5Csqrt%7B25%7D%7D%3C%20%5Cmu%3C93.36%2B%282.4922%29%5Cdfrac%7B19.95%7D%7B%5Csqrt%7B25%7D%7D)
![=93.36-9.943878< \mu](https://tex.z-dn.net/?f=%3D93.36-9.943878%3C%20%5Cmu%3C93.36%2B9.943878)
![=93.36-9.943878< \mu](https://tex.z-dn.net/?f=%3D93.36-9.943878%3C%20%5Cmu%3C93.36%2B9.943878)
![=83.416122< \mu](https://tex.z-dn.net/?f=%3D83.416122%3C%20%5Cmu%3C103.303878%5Capprox83.4161%3C%5Cmu%3C103.3039)
Hence, the 98% confidence interval for the mean repair cost for the dryers. = ![83.4161](https://tex.z-dn.net/?f=83.4161%3C%5Cmu%3C103.3039)