Answer: A wave with a frequency of 14 Hz has a wavelength of 3 meters. At what speed will this wave travel? 1. = 3m (4. = 42m. 2. ... 1,7m (46) = 7802 m. 4. A wave traveling at 230 m/sec has a wavelength of 2.1 meters. What is the frequency of.
Explanation: please give me brainlest
Time = (distance) / (speed)
Time = (150 x 10⁹ m) / (3 x 10⁸ m/s) =
50 x 10¹ sec =
<em>500 sec</em> = 8 min 20 sec
The force constant is 2.145 N/m.
<h3>What is spring constant?</h3>
- The spring constant is the force required to stretch or compress a spring divided by the distance traveled by the spring. It is used to determine whether a spring is stable or unstable.
- K is the proportionality constant, also known as the 'spring constant.' Hooke's law (F = -kx) specifies stiffness and strength via the k variable. The greater the value of k, the greater the force required to stretch an object to a given length.
Using the relation;
T = 2π√m/k
T = time period = 0.45 s
m = mass of object in kilograms = 0.011kg
k = spring constant
To find k based on the formula,
k = 4 × (3.142)^2 × 0.011 / (0.45 )^2
k = 2.145 N/m
Therefore the force constant is 2.145 N/m.
To learn more about force refer to :
brainly.com/question/12785175
#SPJ4
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is


