Upstream speed = S - 1
Downstream speed = S + 1
Average speed = total distance / total time
Average speed = (S - 1) + (S + 1) / 2
= S
S = 6 miles / 4 hours
S = 1.5 miles per hour
Maybe because all of them come from natural elements (sun, air and water)
Answer:
Explanation:
a ) Time period T = 2 s
Angular velocity ω = 2π / T
= 2π / 2 = 3.14 rad /s
Initial moment of inertia I₁ = 200 + mr²
= 200 + 25 x 2.5²
=356.25
Final moment of inertia
I₂ = 200 + 25 X 1.5 X 1.5
= 256.25
b ) We apply law of conservation of momentum
I₁ X ω₁ = I₂ X ω₂
ω₂ = I₁ X ω₁ / I₂
Putting the values

ω₂ = 4.365 rad s⁻¹
c ) Increase in rotational kinetic energy
=1/2 I₂ X ω₂² - 1/2 I₁ X ω₁²
.5 X 256.25 X 4.365² - .5 X 356.25 X 3.14²
= 684.95 J
This energy comes from work done against the centripetal pseudo -force.
Answer:
W₂= 10000 N
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area (A2) of the piston:
Pressure is defined as the force (F) applied per unit area (A)
P=F/A (N/m²)
P1=P2

Equation (1)
Data
W₁ = weight sits on the small piston
F₁ = W₁= 500 N
A₁ = 2.0 cm²
A₂ = 40 cm²
Calculation of the weight (W₂) can the large piston support
We replace data in the equation (1)
F₂ = 10000 N
W₂= F₂= 10000 N
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate: