103.9 hours, if you never stopped for any reason.
Answer:
Explanation:
Moment of inertia of a disc = 1/2 M R²
Since mass is same for both and radius are r and 2r, their moment of inertia can be in the ratio of 1: 4 . Let them be I and 4I . Angular speed are ω₀ and - ω₀ .
We shall apply law of conservation of angular momentum .
initial total angular momentum
I x ω₀ - 4I x ω₀ = - 3Iω₀
Let final common angular momentum be ω
total final angular momentum = ( I + 4I ) ω
Applying law of conservation of angular momentum
( I + 4I ) ω = - 3Iω₀
ω = - 3 / 5 ω₀ .
b )
Initial total rotational K E
= 1/2 I ω₀² + 1/2 4I ω₀²
= 1/2 x5I ω₀²
Final total rotational K E
= 1/2 ( I + 4I ) ( - 3 / 5 ω₀ )²
= 1/2 x 9 / 5 I ω₀²
= 9 / 10I ω₀²
change in rotational kinetic energy = 9 / 10I ω₀² - 1/2 x5I ω₀²
(9/10 - 5/2) xI ω₀²
=( .9 - 2.5 )I ω₀²
= - 1.6 I ω₀² Ans
Able to be hammered or pressed permanently out of shape without breaking or cracking.
Inertness, especially with regard to effort, motion, action, and the like; inactivity; sluggishness.
The formula for accelerational displacement is at^2/2, so we know that 3.9t^2/2 = 200, or 3.9t^2 = 400. t =

, at = v, so