Answer:
20 J
Explanation:
Kinetic energy is given as half of the product of mass and the square of velocity of an object:
KE = 
where m = mass = 40 kg
v = velocity = 1 m/s
Hence, Mary's kinetic energy is:
KE = 
KE = 20 * 1 = 20 J
She has a kinetic energy of 20 J.
Using
F= mv²/r
4 = 0.5×v² / 2
8 /0.5 = v²
v²=16
v= √16
v= 4 ms-¹
Answer: 539.4 N
Explanation:
Let's begin by explaining that Coulomb's Law establishes the following:
"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them"
What is written above is expressed mathematically as follows:
(1)
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Then:
(2)
Isolating
and
:
(3)
Now, if we keep the same charges but we decrease the distance to
, (1) is rewritten as:
(4)
Then, the new electrostatic force will be:
(5) As we can see, the electrostatic force is increased when we decrease the distance between the charges.
Answer:
44.13015
Explanation:
use the 9.8067 newtons to 1 kg conversion
Answer:
1. Energy = 2880 Joules.
2. Energy = 60 Joules.
3. Quantity of charge = 120 Coulombs.
Explanation:
Given the following data;
1. Voltage = 12 Volts
Current = 0.5 Amps
Time, t = 8 mins to seconds = 8 * 60 = 480 seconds
To find the energy;
Power = current * voltage
Power = 12 * 0.5
Power = 6 Watts
Next, we find the energy transferred;
Energy = power * time
Energy = 6 * 480
Energy = 2880 Joules
2. Charge, Q = 4 coulombs
Potential difference, p.d = 15V
To find the total energy transferred;
Energy = Q * p.d
Energy = 4 * 15
Energy = 60 Joules
3. Voltage = 6 Volts
Current = 1 Amps
Time = 2 minutes to seconds = 2 * 60 = 120 seconds
To find the quantity of charge;
Quantity of charge = current * time
Quantity of charge = 1 * 120
Quantity of charge = 120 Coulombs