Answer:
When one system vibrating at its natural frequency is put closer to a stationary system, the stationary system receives impulses.
At resonant frequency, the system vibrating at its own natural frequency suddenly goes on decreasing in order to cope with neighboring system.
These decrease in frequency is known as damping.
Answer:

Explanation:
<h3><u>Given data:</u></h3>
Acceleration = a = 3 m/s²
Force = F = 150 N
<h3><u>Required:</u></h3>
Mass = m = ?
<h3><u>Formula:</u></h3>
F = ma
<h3><u>Solution:</u></h3>
Put the givens in the formula
150 = m (3)
Divide 3 to both sides
150/3 = m
50 kg = m
m = 50 kg
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
They both are waves but one goes faster then the other.
Answer:

Explanation:
Given that,
The length of a string, l = 0.87 m
Speed of the ball, v = 3.36 m/s
We need to find the acceleration of the ball. The acceleration acting on the ball is centripetal acceleration. It is given by :

So, the acceleration of the ball is
.
Remember that the total
velocity of the motion is the vector sum of the velocity you would have in
still water and the stream. Always place the vectors carefully to be able to
come up with an accurate sum vector.
<span> </span>