Answer:
The distance traveled by the skier is 5.309 km
Solution:
As per the question:
Mass of the skier, m = 64 kg
Coefficient of friction between the ski and the snow,
Mass of snow, M = 5.0 kg
Now,
To calculate the distance, 's' traveled by the skier, in order to melt 5.0 kg of snow:
We know that:
where
= coefficient of friction
N = Normal Reaction
N = mg
Thus
(1)
Also,
(2)
where
= Latent Heat of fusion
Thus from eqn (1) and (2):
s = 5.309 km
Answer:
(a) θ1 = 942.5rad, (b) θ2 = 13195 rad
Explanation:
(a) Given
ωo = 0 rad/s
ω = 3600rev/min = 3600×2(pi)/60 rad/s
ω = 377rad/s
t1 = 5s
θ1 = (ω + ωo)t/2
θ1 = (377 +0)×5/2
θ1 = 942.5 rads
(b) ωo = 377rad/s
ω = 0 rad/s
t2 = 70s
θ2 = (ω + ωo)t/2
θ2 = (377 +0)×70/2
θ2 = 13195 rad
In the absence of gravity, t<span>he rocks and debris
would never accrete into a planet. (B)
Also by the way, it wouldn't matter much, because
there wouldn't be a star to orbit around, AND orbits
wouldn't exist either.</span>
Answer:
The universal law of gravitation.
PE = m * G M / R^2 potential energy of mass m due to attractive forces
If the kinetic energy of mass m is greater than the energy due to the attractive masses then then mass m can continue indefinitely away from the attracting masses.
Answer:
The acceleration is 2 m/s2.
Explanation:
We calculate the acceleration (a), with the data of mass (m) and force (F), through the formula:
F = m x a ---> a= F/m
a = 40 N/20 kg <em> 1N= 1 kg x m/s2</em>
a= 40 kgx m/s2/ 20 kg
<em>a= 2 m/s2</em>