Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA =
/ ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
The statement 'establishing a high critical value in a statistical test is associated with more confidence' is TRUE.
<h3>What is statistical significance?</h3>
The statistical significance is a arbitrary value used to indicate that data collected can be used to confirm (or reject) my working hypothesis.
The most widely used value to measure the statistical significance is the p threshold.
In conclusion, the statement 'Establishing a high critical value when calculating the results of a statistical test means that a researcher will have more confidence in finding significance than when a lower critical value is established' is TRUE.
Learn more about statistical significance here:
brainly.com/question/15848236
#SPJ1
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer:
The density of gold is of 18 grams per cm3.
Explanation:
The mass density of a homogeneous material expresses how much mass of that material is present in a given volume. Since the density of an object is obtained by dividing its mass by its volume, to obtain the density of gold, its 90 grams of mass must be divided by its 5 cm3 volume, performing the following calculation:
90/5 = X
18 = X
Thus, the density of gold is 18 grams per cm3.
Answer: 0.25 m/s
Explanation: Speed = wavelengt · frequency
v = λf and frequency is 1/period f = 1/T
Then v = λ/T = 5 m / 20 s = 0.25 m/s