Answer:
1) d
2) 5 m/s
3) 100
Explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i) 
The equation for velocity v and a constant acceleration a is:
(ii) 
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii) 
(iv) 
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v) 
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

The weight of the car in the picture of the computer screen is 9,800 Newton's.
(1) The image of an object placed further from the lens than the focal point will be upside down and smaller than the object.
(2) When light rays reflect, they bounce back.
(3) Images formed by a concave lens will look magnified.
(4) When light rays enter a different medium, they bend.
<h3>
1.0 Object placed further from the lens than the focal point</h3>
The image of an object placed further from the lens than the focal point will be diminished and inverted.
Thus, the correct answer will be "upside down and smaller than the object".
<h3>2.0 What is reflection of light?</h3>
The ability of light to bounce back when it strike a hard surface is known as refection.
<h3>3.0 Image formed by concave lens</h3>
A concave lens is diverging lens is usually virtual, erect and magnified.
<h3>4.0 Refraction of light</h3>
The change in speed of light when it travels from medium to another medium is known as refraction. Refraction is also, the ability of light to bend around obstacles.
Learn more about reflection and refraction of light here: brainly.com/question/1191238
C.) a magnetic field is the correct answer…
Answer:
Alaska: Hydrokinetic Energy Campbell CR9000X used for in-stream hydrokinetic device evaluation. Marine hydrokinetic energy power generation is an emerging sector in the renewable energy portfolio. Hydrokinetic devices convert the energy of waves, tidal currents, ocean currents or river currents into electrical power.