Answer:
(a) Barium is produced at the negative electrode
(b) Iodine is produced at the positive electrode
Explanation:
When an electric current is passed through a solution containing electrolyte, a non spontaneous reaction is stimulated. This results in the flow of <u>positively charged ions to negatively charged electrodes(</u><u>cathode</u><u>) and negatively charged ions to positively charged electrodes(</u><u>anode</u><u>)</u>
When an electric current is passed through molten
in the electrolytic cell, the following reactions takes place:
→
+ 2
At the anode;
Iodine ions will lose an electron and will be oxidized to iodine
→
+ 
At the cathode;
Barium ions gains electrons and its reduced to barium metal
+
→ Ba
Answer:
1-(tert-butoxy)-2-methylpropane
Note: there is a mistake in formula, the correct formula is (CH₃)₂-CH-CH₂-O-C(CH₃)₃ not (CH₃)₂-CH-CH₂-O(CH₃)₃, because oxygen is a divalent compound.
Explanation:
<em>Structural formula is attached</em>
IUPAC naming rules
1. start numbering the chain from the functional group. In this compound we start from oxygen side.
2. Here we can see that at position 1 there is an oxy group along with a tertiary carbon having three methyl groups. So we write it as 1-tert-butoxy. Which means that there is a methoxy group at position 1 along with a tertiary carbon.
3. At position 2 we can see that there is a methyl group attached to the main chain, so we write it as 2-methyl.
4. Now we count the total number of carbons in the main chain. As we can see that there are 3 carbons in the remaining or parent chain, so we write it as propane
5. So the IUPAC name of the compound will be 1-(tert-butoxy)-2-methylpropane
Oxidation number is charge of element in compound. Can be neutral, positive or negative.
Oxygen in dichromate has oxidation number -2, becauce there are seven oxygens, net oxidation number of oxygen is -14.
2·x(oxidation number of Cr) + 7· (-2) = -2 2x= +12
x= +6, oxidation number of one chromium is +6.
Answer:
Explanation:
AgCl ⇄ Ag⁺ + Cl⁻
m m m
If x mole of AgCl be dissolved in one litre .
[ Ag⁺ ] [ Cl⁻ ] = 1.6 x 10⁻¹⁰
m² = 1.6 x 10⁻¹⁰
m = 1.26 x 10⁻⁵ moles
So solubility of AgCl is 1.26 x 10⁻⁵ moles / L
Answer:
Amylase.
Explanation:
The process of digestion begin to start in mouth when food mix with saliva. An enzyme is released which is called Amylase help in digestion of carbohydrates.