<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Answer:
The answer is "
".
Explanation:
Cavity and benzene should be extended in equal quantities.



<span>Near the equator, the patterns of convection currents are called
Hadley Cells.</span>
Hadley Cells refers to the low-latitude overturning movements that
have air increasing at the equator and air dropping at roughly latitude of 30
degree and these cells are also responsible for the trade winds in the Tropics
and control low-latitude patterns of weather.
Answer:
the height of the potential energy is 3,200 J
Explanation:
The computation of the kinetic energy is shown below:
Kinetic energy = 1 ÷ 2 × mass × velocity^2
= 1 ÷ 2 × 4 kg × 40 m/s^2
= 3,200 J
Hence the height of the potential energy is 3,200 J